PhyzJob: Conservation of Momentum Number Puzzles

PART 2: SPEED

INSTRUCTIONS: In each of the scenarios below, some information regarding the system (or elements within the system) is given. Determine the missing speed based on what you know about conservation of momentum.

1. A Stationary Bomb Explodes.

v = 0 m/s

 $m_1 = 7.0 \text{ kg}$ $v_1' = -1.43 \text{ m/s}$

 $m_2 = 3.0 \text{ kg}$ $v_2' = ?$

DON'T THINK:

$$p = p'$$

 $p_1 + p_2 = p_1' + p_2'$

 $m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$

SOLVE:

$$m_2v_2' = -m_1v_1'$$

 $0 = m_1 v_1' + m_2 v_2'$

$$v_2' = -m_1 v_1'/m_2$$

THINK:

$$v_1 = v_2 = v = 0$$

APPLY:

$$0 = m_1 v_1' + m_2 v_2'$$

 $v_2' = 3.3 \text{ m/s}$

2. Moving Blobs of Clay Collide.

 $m_1 = 5.0 \text{ kg}$ $v_1 = 8.0 \text{ m/s}$

$$m_2 = 3.0 \text{ kg}$$

 $v_2 = 0 \text{ m/s}$

 $v_2' = -7.0 \text{ kg} \cdot -1.43 \text{ m/s} / 3.0 \text{ kg}$

v' = ?

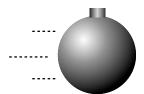
Now the moving mass is 5 kg + 3 kg = 8 kg.

DON'T THINK:

$$p = p'$$

$$p_1 + p_2 = p_1' + p_2'$$

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$


THINK:

$$v_2 = 0$$
, $v_1' = v_2' = v'$

APPLY:

$$m_1v_1 = m_1v' + m_2v'$$

3. A Moving Bomb Explodes.

 $m_1 = 6.0 \text{ kg}$

$$m_2 = 4.0 \text{ kg}$$

$$p_1 + p_2 = p_1' + p_2'$$

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

$$v_1 = v_2 = v$$

$$v = +9.0 \text{ m/s}$$

$$v_1' = -7.5 \text{ m/s}$$

$$v_2' = ?$$

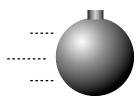
4. Moving Blobs of Clay Collide. (YOU draw the "speed lines.")

 $m_2 = 5.0 \text{ kg}$

 $v_2 = -2.0 \text{ m/s}$

 $m_1 = 8.0 \text{ kg}$

$$v_1 = +4.0 \text{ m/s}$$


$$p_1 + p_2 = p_1' + p_2'$$

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

$$v' = ?$$

5. A Moving Bomb Explodes.

 $m_1 = 4.0 \text{ kg}$ v = ?

$$m_2 = 3.0 \text{ kg}$$

$$v_1' = -5.0 \text{ m/s}$$

$$v_2' = +12 \text{ m/s}$$