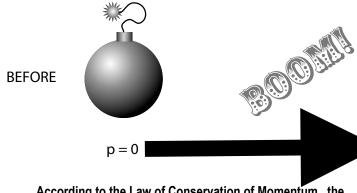
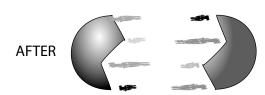
PhyzJob: Conservation of Momentum Number Puzzles

PART 1: MOMENTUM



INSTRUCTIONS: In each of the scenarios below, some information regarding the system (or elements within the system) is given. Provide the missing information based on what you know about conservation of momentum.


One Dimension

1. The Stationary Bomb Explodes.

p' means momentum after an event. The ' mark means after.

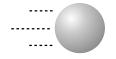
According to the Law of Conservation of Momentum, the momentum before (p) is equal to the momentum after (p').

$$p' = \underline{\hspace{1cm}} = p_1' + p_2'$$

 $p_1' = -10 \text{ kg} \cdot \text{m/s } p_2' = \underline{\hspace{1cm}}$

2. A Blob of Clay Collides With a Stationary Blob of Clay.

$$p_2 = 0$$


$$p_1 + p_2 = p =$$

ek 1 it ch

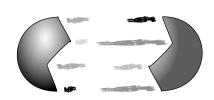
According to the Law of Conservation of Momentum, the momentum before (p) is equal to the momentum after (p').

3. A Metal Ball Collides With a Stationary Metal Ball.

1/1/X

 $p' = \underline{\hspace{1cm}} = p1' + p2'$

$$p_1 = 10 \text{ kg} \cdot \text{m/s}$$


$$p_2 = 0$$

$$p_1 + p_2 = p =$$

4. A Moving Bomb Explodes.

 $p = 10 \text{ kg} \cdot \text{m/s}$

According to the Law of Conservation of Momentum, the momentum before (p) is equal to the momentum after (p').

$$p' = \underline{\hspace{1cm}} = p_1' + p_2'$$

$$p_1' = -10 \text{ kg} \cdot \text{m/s } p_2' = \underline{\hspace{1cm}}$$

5. Moving Blobs of Clay Collide. (YOU draw the "speed lines.")

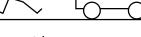
$$p_1 = +10 \text{ kg} \cdot \text{m/s}$$

$$p_2 =$$

$$p' = +4 \text{ kg} \cdot \text{m/s}$$

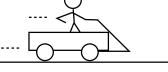
$$p_1 + p_2 = p =$$

6. Moving Metal Balls Collide. (YOU draw the "speed lines.")


$$p_1 = +10 \text{ kg} \cdot \text{m/s}$$
 $p_2 = -13 \text{ kg} \cdot \text{m/s}$

 $p' = \underline{\hspace{1cm}} = p_1' + p_2'$

$$p_1' = -8 \text{ kg} \cdot \text{m/s}$$
 $p_2' = \underline{\hspace{1cm}}$


7. A New Kind of Mystery. A Running Child Jumps Into a Stationary Wagon.

 $p_1 + p_2 = p =$ _____

$$m_1 = 40 \text{ kg}$$

$$m_2 = 10 \text{ kg}$$

$$v_1 = 5.0 \text{ m/s}$$

$$v_2 = 0$$